MySQL 常用分库分表方案,都在这里了!

码农突围 2020-11-09 19:13:07
watermark shadow


一、数据库瓶颈

不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

1、IO瓶颈 第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。 第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。

2、CPU瓶颈 第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。

第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。

二、分库分表

1、水平分库 在这里插入图片描述 概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。

结果: 每个库的结构都一样; 每个库的数据都不一样,没有交集; 所有库的并集是全量数据;

场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。

分析:库多了,io和cpu的压力自然可以成倍缓解。

2、水平分表 在这里插入图片描述 概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。

结果: 每个表的结构都一样; 每个表的数据都不一样,没有交集; 所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。

分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。

3、垂直分库 在这里插入图片描述 概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。

结果: 每个库的结构都不一样; 每个库的数据也不一样,没有交集; 所有库的并集是全量数据; 场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。

分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

4、垂直分表 在这里插入图片描述 概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。

结果: 每个表的结构都不一样; 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据; 所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。

分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

三、分库分表工具

sharding-sphere:jar,前身是sharding-jdbc; TDDL:jar,Taobao Distribute Data Layer; Mycat:中间件。 注:工具的利弊,请自行调研,官网和社区优先。

四、分库分表步骤

根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。

五、分库分表问题

1、非partition key的查询问题 基于水平分库分表,拆分策略为常用的hash法。 端上除了partition key只有一个非partition key作为条件查询

映射法 在这里插入图片描述

基因法 在这里插入图片描述 注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。 端上除了partition key不止一个非partition key作为条件查询

映射法 在这里插入图片描述 冗余法 在这里插入图片描述 注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?

后台除了partition key还有各种非partition key组合条件查询 NoSQL法 在这里插入图片描述 冗余法 在这里插入图片描述 2、非partition key跨库跨表分页查询问题 基于水平分库分表,拆分策略为常用的hash法。 注:用NoSQL法解决(ES等)。

3、扩容问题 基于水平分库分表,拆分策略为常用的hash法。

水平扩容库(升级从库法) 在这里插入图片描述 注:扩容是成倍的。

水平扩容表(双写迁移法) 在这里插入图片描述 第一步:(同步双写)修改应用配置和代码,加上双写,部署;第二步:(同步双写)将老库中的老数据复制到新库中;第三步:(同步双写)以老库为准校对新库中的老数据;第四步:(同步双写)修改应用配置和代码,去掉双写,部署; 注:双写是通用方案。

六、分库分表总结

分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。

选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。 只要能满足需求,拆分规则越简单越好。

七、分库分表示例 示例GitHub地址:https://github.com/littlecharacter4s/study-sharding

转自:尜尜人物 来源:www.cnblogs.com/littlecharacter/p/9342129.htm

版权声明
本文为[码农突围]所创,转载请带上原文链接,感谢
https://my.oschina.net/u/4192546/blog/4710280

  1. 【计算机网络 12(1),尚学堂马士兵Java视频教程
  2. 【程序猿历程,史上最全的Java面试题集锦在这里
  3. 【程序猿历程(1),Javaweb视频教程百度云
  4. Notes on MySQL 45 lectures (1-7)
  5. [computer network 12 (1), Shang Xuetang Ma soldier java video tutorial
  6. The most complete collection of Java interview questions in history is here
  7. [process of program ape (1), JavaWeb video tutorial, baidu cloud
  8. Notes on MySQL 45 lectures (1-7)
  9. 精进 Spring Boot 03:Spring Boot 的配置文件和配置管理,以及用三种方式读取配置文件
  10. Refined spring boot 03: spring boot configuration files and configuration management, and reading configuration files in three ways
  11. 精进 Spring Boot 03:Spring Boot 的配置文件和配置管理,以及用三种方式读取配置文件
  12. Refined spring boot 03: spring boot configuration files and configuration management, and reading configuration files in three ways
  13. 【递归,Java传智播客笔记
  14. [recursion, Java intelligence podcast notes
  15. [adhere to painting for 386 days] the beginning of spring of 24 solar terms
  16. K8S系列第八篇(Service、EndPoints以及高可用kubeadm部署)
  17. K8s Series Part 8 (service, endpoints and high availability kubeadm deployment)
  18. 【重识 HTML (3),350道Java面试真题分享
  19. 【重识 HTML (2),Java并发编程必会的多线程你竟然还不会
  20. 【重识 HTML (1),二本Java小菜鸟4面字节跳动被秒成渣渣
  21. [re recognize HTML (3) and share 350 real Java interview questions
  22. [re recognize HTML (2). Multithreading is a must for Java Concurrent Programming. How dare you not
  23. [re recognize HTML (1), two Java rookies' 4-sided bytes beat and become slag in seconds
  24. 造轮子系列之RPC 1:如何从零开始开发RPC框架
  25. RPC 1: how to develop RPC framework from scratch
  26. 造轮子系列之RPC 1:如何从零开始开发RPC框架
  27. RPC 1: how to develop RPC framework from scratch
  28. 一次性捋清楚吧,对乱糟糟的,Spring事务扩展机制
  29. 一文彻底弄懂如何选择抽象类还是接口,连续四年百度Java岗必问面试题
  30. Redis常用命令
  31. 一双拖鞋引发的血案,狂神说Java系列笔记
  32. 一、mysql基础安装
  33. 一位程序员的独白:尽管我一生坎坷,Java框架面试基础
  34. Clear it all at once. For the messy, spring transaction extension mechanism
  35. A thorough understanding of how to choose abstract classes or interfaces, baidu Java post must ask interview questions for four consecutive years
  36. Redis common commands
  37. A pair of slippers triggered the murder, crazy God said java series notes
  38. 1、 MySQL basic installation
  39. Monologue of a programmer: despite my ups and downs in my life, Java framework is the foundation of interview
  40. 【大厂面试】三面三问Spring循环依赖,请一定要把这篇看完(建议收藏)
  41. 一线互联网企业中,springboot入门项目
  42. 一篇文带你入门SSM框架Spring开发,帮你快速拿Offer
  43. 【面试资料】Java全集、微服务、大数据、数据结构与算法、机器学习知识最全总结,283页pdf
  44. 【leetcode刷题】24.数组中重复的数字——Java版
  45. 【leetcode刷题】23.对称二叉树——Java版
  46. 【leetcode刷题】22.二叉树的中序遍历——Java版
  47. 【leetcode刷题】21.三数之和——Java版
  48. 【leetcode刷题】20.最长回文子串——Java版
  49. 【leetcode刷题】19.回文链表——Java版
  50. 【leetcode刷题】18.反转链表——Java版
  51. 【leetcode刷题】17.相交链表——Java&python版
  52. 【leetcode刷题】16.环形链表——Java版
  53. 【leetcode刷题】15.汉明距离——Java版
  54. 【leetcode刷题】14.找到所有数组中消失的数字——Java版
  55. 【leetcode刷题】13.比特位计数——Java版
  56. oracle控制用户权限命令
  57. 三年Java开发,继阿里,鲁班二期Java架构师
  58. Oracle必须要启动的服务
  59. 万字长文!深入剖析HashMap,Java基础笔试题大全带答案
  60. 一问Kafka就心慌?我却凭着这份,图灵学院vip课程百度云