低开销获取时间戳

捉虫大师 2021-04-16 16:24:01
java 时间 获取 开销 开发者头条


前言

在前面文章《Cobar SQL审计的设计与实现》中提了一句关于时间戳获取性能的问题

获取操作系统时间,在Java中直接调用 System.currentTimeMillis(); 就可以,但在Cobar中如果这么获取时间,就会导致性能损耗非常严重(怎么解决?去Cobar的github仓库上看看代码吧)。

这个话题展开具体说说,我们在Java中获取时间戳的方法是System.currentTimeMillis(),返回的是毫秒级的时间戳,查看源码,注释写的比较清楚,虽然该方法返回的是毫秒级的时间戳,但精度取决于操作系统,很多操作系统返回的精度是10毫秒。

    /**
     * Returns the current time in milliseconds.  Note that
     * while the unit of time of the return value is a millisecond,
     * the granularity of the value depends on the underlying
     * operating system and may be larger.  For example, many
     * operating systems measure time in units of tens of
     * milliseconds.
     *
     * <p> See the description of the class <code>Date</code> for
     * a discussion of slight discrepancies that may arise between
     * "computer time" and coordinated universal time (UTC).
     *
     * @return  the difference, measured in milliseconds, between
     *          the current time and midnight, January 1, 1970 UTC.
     * @see     java.util.Date
     */

    public static native long currentTimeMillis();

关于为什么System.currentTimeMillis()慢,有大佬写了文章详细地阐述了原因,建议仔细阅读,非常深入和详细,文章地址

http://pzemtsov.github.io/2017/07/23/the-slow-currenttimemillis.html

总结起来原因是System.currentTimeMillis调用了gettimeofday()

  • 调用gettimeofday()需要从用户态切换到内核态;
  • gettimeofday()的表现受Linux系统的计时器(时钟源)影响,在HPET计时器下性能尤其差;
  • 系统只有一个全局时钟源,高并发或频繁访问会造成严重的争用。

我们测试一下System.currentTimeMillis()在不同线程下的性能,这里使用中间件常用的JHM来测试,测试1到128线程下获取1000万次时间戳需要的时间分别是多少,这里给出在我的电脑上的测试数据:

Benchmark                    Mode  Cnt  Score   Error  Units
TimeStampTest.test1Thread    avgt       0.271           s/op
TimeStampTest.test2Thread    avgt       0.272           s/op
TimeStampTest.test4Thread    avgt       0.278           s/op
TimeStampTest.test8Thread    avgt       0.375           s/op
TimeStampTest.test16Thread   avgt       0.737           s/op
TimeStampTest.test32Thread   avgt       1.474           s/op
TimeStampTest.test64Thread   avgt       2.907           s/op
TimeStampTest.test128Thread  avgt       5.732           s/op

可以看出在1-4线程下比较快,8线程之后就是线性增长了。

测试代码参考:

@State(Scope.Benchmark)
public class TimeStampTest {

    private static final int MAX = 10000000;

    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
                .include(TimeStampTest.class.getSimpleName())
                .forks(1)
                .warmupIterations(1)
                .measurementIterations(1)
                .warmupTime(TimeValue.seconds(5))
                .measurementTime(TimeValue.seconds(5))
                .mode(Mode.AverageTime)
                .syncIterations(false)
                .build()
;

        new Runner(opt).run();
    }

    @Benchmark
    @Threads(1)
    public void test1Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(2)
    public void test2Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(4)
    public void test4Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(8)
    public void test8Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(16)
    public void test16Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(32)
    public void test32Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(64)
    public void test64Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    @Benchmark
    @Threads(128)
    public void test128Thread() {
        for (int i = 0; i < MAX; i++) {
            currentTimeMillis();
        }
    }

    private static long currentTimeMillis() {
        return System.currentTimeMillis();
    }
}

解法

最容易想到的方法是缓存时间戳,并使用一个独立的线程来更新它。这样获取就只是从内存中取一下,开销非常小,但缺点也很明显,更新的频率决定了时间戳的精度。

Cobar

Cobar获取和更新时间戳相关代码位于

https://github.com/alibaba/cobar/blob/master/server/src/main/server/com/alibaba/cobar/util/TimeUtil.java

/**
 * 弱精度的计时器,考虑性能不使用同步策略。
 * 
 * @author xianmao.hexm 2011-1-18 下午06:10:55
 */

public class TimeUtil {
    private static long CURRENT_TIME = System.currentTimeMillis();

    public static final long currentTimeMillis() {
        return CURRENT_TIME;
    }

    public static final void update() {
        CURRENT_TIME = System.currentTimeMillis();
    }

}

定时调度代码位于

https://github.com/alibaba/cobar/blob/master/server/src/main/server/com/alibaba/cobar/CobarServer.java

timer.schedule(updateTime(), 0L, TIME_UPDATE_PERIOD);
...
// 系统时间定时更新任务
private TimerTask updateTime() {
    return new TimerTask() {
        @Override
        public void run() {
            TimeUtil.update();
        }
    };
}

而Cobar中的更新间隔 TIME_UPDATE_PERIOD是20毫秒

Sentinel

Sentinel也用到了缓存时间戳,其代码位于

https://github.com/alibaba/Sentinel/blob/master/sentinel-core/src/main/java/com/alibaba/csp/sentinel/util/TimeUtil.java

public final class TimeUtil {

    private static volatile long currentTimeMillis;

    static {
        currentTimeMillis = System.currentTimeMillis();
        Thread daemon = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    currentTimeMillis = System.currentTimeMillis();
                    try {
                        TimeUnit.MILLISECONDS.sleep(1);
                    } catch (Throwable e) {

                    }
                }
            }
        });
        daemon.setDaemon(true);
        daemon.setName("sentinel-time-tick-thread");
        daemon.start();
    }

    public static long currentTimeMillis() {
        return currentTimeMillis;
    }
}

可以看到Sentinel实现的是每隔1毫秒缓存一次。

我们修改一下测试代码测试一下Sentinel的实现方式在1-128线程下的性能表现

Benchmark                    Mode  Cnt   Score   Error  Units
TimeStampTest.test1Thread    avgt       ≈ 10⁻⁴           s/op
TimeStampTest.test2Thread    avgt       ≈ 10⁻⁴           s/op
TimeStampTest.test4Thread    avgt       ≈ 10⁻⁴           s/op
TimeStampTest.test8Thread    avgt       ≈ 10⁻³           s/op
TimeStampTest.test16Thread   avgt        0.001           s/op
TimeStampTest.test32Thread   avgt        0.001           s/op
TimeStampTest.test64Thread   avgt        0.003           s/op
TimeStampTest.test128Thread  avgt        0.006           s/op

可以和直接使用System.currentTimeMillis对比,差距非常明显。

最后

虽然缓存时间戳性能能提升很多,但这也仅限于非常高的并发系统中,一般比较适用于高并发的中间件,如果一般的系统来做这个优化,效果并不明显。性能优化还是要抓住主要矛盾,解决瓶颈,切忌不可过渡优化。


欢迎关注我的公众号“捉虫大师”


版权声明
本文为[捉虫大师]所创,转载请带上原文链接,感谢
https://toutiao.io/k/5a4o9sd

  1. 【计算机网络 12(1),尚学堂马士兵Java视频教程
  2. 【程序猿历程,史上最全的Java面试题集锦在这里
  3. 【程序猿历程(1),Javaweb视频教程百度云
  4. Notes on MySQL 45 lectures (1-7)
  5. [computer network 12 (1), Shang Xuetang Ma soldier java video tutorial
  6. The most complete collection of Java interview questions in history is here
  7. [process of program ape (1), JavaWeb video tutorial, baidu cloud
  8. Notes on MySQL 45 lectures (1-7)
  9. 精进 Spring Boot 03:Spring Boot 的配置文件和配置管理,以及用三种方式读取配置文件
  10. Refined spring boot 03: spring boot configuration files and configuration management, and reading configuration files in three ways
  11. 精进 Spring Boot 03:Spring Boot 的配置文件和配置管理,以及用三种方式读取配置文件
  12. Refined spring boot 03: spring boot configuration files and configuration management, and reading configuration files in three ways
  13. 【递归,Java传智播客笔记
  14. [recursion, Java intelligence podcast notes
  15. [adhere to painting for 386 days] the beginning of spring of 24 solar terms
  16. K8S系列第八篇(Service、EndPoints以及高可用kubeadm部署)
  17. K8s Series Part 8 (service, endpoints and high availability kubeadm deployment)
  18. 【重识 HTML (3),350道Java面试真题分享
  19. 【重识 HTML (2),Java并发编程必会的多线程你竟然还不会
  20. 【重识 HTML (1),二本Java小菜鸟4面字节跳动被秒成渣渣
  21. [re recognize HTML (3) and share 350 real Java interview questions
  22. [re recognize HTML (2). Multithreading is a must for Java Concurrent Programming. How dare you not
  23. [re recognize HTML (1), two Java rookies' 4-sided bytes beat and become slag in seconds
  24. 造轮子系列之RPC 1:如何从零开始开发RPC框架
  25. RPC 1: how to develop RPC framework from scratch
  26. 造轮子系列之RPC 1:如何从零开始开发RPC框架
  27. RPC 1: how to develop RPC framework from scratch
  28. 一次性捋清楚吧,对乱糟糟的,Spring事务扩展机制
  29. 一文彻底弄懂如何选择抽象类还是接口,连续四年百度Java岗必问面试题
  30. Redis常用命令
  31. 一双拖鞋引发的血案,狂神说Java系列笔记
  32. 一、mysql基础安装
  33. 一位程序员的独白:尽管我一生坎坷,Java框架面试基础
  34. Clear it all at once. For the messy, spring transaction extension mechanism
  35. A thorough understanding of how to choose abstract classes or interfaces, baidu Java post must ask interview questions for four consecutive years
  36. Redis common commands
  37. A pair of slippers triggered the murder, crazy God said java series notes
  38. 1、 MySQL basic installation
  39. Monologue of a programmer: despite my ups and downs in my life, Java framework is the foundation of interview
  40. 【大厂面试】三面三问Spring循环依赖,请一定要把这篇看完(建议收藏)
  41. 一线互联网企业中,springboot入门项目
  42. 一篇文带你入门SSM框架Spring开发,帮你快速拿Offer
  43. 【面试资料】Java全集、微服务、大数据、数据结构与算法、机器学习知识最全总结,283页pdf
  44. 【leetcode刷题】24.数组中重复的数字——Java版
  45. 【leetcode刷题】23.对称二叉树——Java版
  46. 【leetcode刷题】22.二叉树的中序遍历——Java版
  47. 【leetcode刷题】21.三数之和——Java版
  48. 【leetcode刷题】20.最长回文子串——Java版
  49. 【leetcode刷题】19.回文链表——Java版
  50. 【leetcode刷题】18.反转链表——Java版
  51. 【leetcode刷题】17.相交链表——Java&python版
  52. 【leetcode刷题】16.环形链表——Java版
  53. 【leetcode刷题】15.汉明距离——Java版
  54. 【leetcode刷题】14.找到所有数组中消失的数字——Java版
  55. 【leetcode刷题】13.比特位计数——Java版
  56. oracle控制用户权限命令
  57. 三年Java开发,继阿里,鲁班二期Java架构师
  58. Oracle必须要启动的服务
  59. 万字长文!深入剖析HashMap,Java基础笔试题大全带答案
  60. 一问Kafka就心慌?我却凭着这份,图灵学院vip课程百度云